

Art By

Patrick Yurick

Script By
 Tony Eng \&
 Art Assists By
 Leanne Brennen

 Patrick Yurick

 Patrick Yurick}

Editorial Assists Heather Konar

Iliii gradx

Gradx Professional Development
Office of Graduate Education
Masschusetts Institute of Technology
Cambridge, Massachusetts

cc 2018 Massachusetts Institute of Technology

(c) $\$=$

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You are free to: Share - copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms.

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial

You may not use the material for commercial purposes.

NoDerivatives

If you remix, transform, or build upon the material, you may not distribute the modified material.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

Front cover image by Patrick Yurick.
Book design by Patrick Yurick.
Printed by Haichris, Inc., in the United States of America.
First printing edition 2018.
Massachusetts Institute of Technology
77 Massachusetts Ave, Cambridge, MA 02139
(617) 253-1000

Table Of Contents

Foreward

........Page 3
by Joel Schindall

Introduction

........Page 5
by Tony Eng

1-Keeping Audience In Mind Page 7

Choosing The Right Words

2 - Giving Context

\qquad Page 25

Using Narrative

3-Giving Context

........ Page 37
Highlighting Differences
4 - Explaining The Technical \qquad Page 47
Buying the Audience Time

5 - Controlling Focus

........ Page 63
Explaining While Exploring

6 - Being Concise
........ Page 77

Summarizing The Summary

Foreward

Ihave been privileged to work with Tony Eng as he developed and constantly improved 6.UAT, a required course designed to help MIT EECS seniors improve their communication skills. The lessons learned in this course have recently been translated into a Communication Comic, which is finally being released after more than a year of prototyping. I am honored to have been asked to write an introduction.

One might ask 'MIT is focused on science and engineering, so why a required course on communication?' To answer this, it is helpful to recognize that "engineer" is both a noun and a verb. An engineer must have the knowledge to work in his or her field, but an engineer must also have the communication, teamwork and leadership skills to work together with others to "engineer" or implement a product or a process. Similarly, a scientist seeks to "discover" new principles, but to do this he/she must go through the process of discovery, which also requires working effectively with others. During my 35 years as a practicing engineer, I've leaned that just knowing something, or having an idea for a discovery, doesn't make it happen. It takes teamwork, advocacy, and inspiration.

Without effective communication, teamwork cannot take place. Communication provides the instruction, the coordination, the connection, the strategic discussion, and the constant feedback. Except for a limited
number of cases, projects or research in the real world get done by teams of people. Each person on the team has a contribution to make, but it requires effective communication between the team members to actually make this happen.

Communication skills can often be difficult to teach, in part because students are strongly locked in to the patterns and inhibitions that they developed when they were young. By using comics, Tony shifts the conversation to a new level wherein he bypasses deep-seated neural inhibitions and avoids verbal explanations. Instead, he illustrates basic communication principles through simple visual comics which communicate directly and viscerally to the limbic mind where insight is based. These insights free the mind to explore and develop in new directions.

Joel Schindall
 Professor of the Practiice, MIT EECS Founder, Bernard Gordon-MIT Engineering Leadership Program SB, MS, PhD in EECS, MIT

Dr. Schindall returned to MIT in 2002 as a professor of the practice in EECS, and later helped to propose, design and implement the Bernard Gor-don-MIT Engineering Leadership Program. Prior to that he spent 35 years in design and leadership positions in the telecommunications and satellite industry. He received his BS, MS and Phd degrees in Electrical Engineering from MIT.

Introduction

Astudent once asked me if I had written a book about presentation skills and if so, where they could buy it. My response was why would anyone want to read a book on how to present? Anything l'd write would just be pure common sense anyway.

I used to teach an introductory computer science course, and it was challenging to come up with ways to explain technical material and rewarding to see a light go on when a student finally got something. But a nontechnical soft skills class was just not the same. Everything is simply put, obvious. There were no deep insights. No aha moments. I missed seeing light bulbs go off. What's more, one day someone would realize that all I did was teach people what they know or should have known. I constantly tweaked the course and experimented with different approaches, activities and assignments, hoping to create something that would be perceived by the students as being valuable. The only consolation I had was that even though they should have known these things, they didn't know how to (or remember to or were too lazy to) incorporate them into the design and delivery of their talks. And so,my course would at the very least remind them of the obvious.

Then in Summer of 2016, Patrick Yurick asked if I would help create an online course in Graduate Communications. I didn't think that would be an effective way to teach
oral communication, but he mentioned that he hoped to use comics in some capacity. Comics? Intriguing. A non-obvious way to convey the obvious. A fun medium for students to read about a mundane topic like presentation skills. I'm in.

With the help of Francis Chen (who is a great sounding board and sanity checker) and Patrick Yurick (whose artistic touch brought the comics to a whole new dimension), six comics were initially created. Each comic contains a nugget of communication advice, and the intention was for other contributors (1) to augment the collection by creating comics with additional nuggets of advice, and for educators (2) to use the resulting collection as an educational resource for teaching materials in the courses that they teach - they could build a custom experience around nuggets (comics) of their choosing.

The comics can be read individually or in sequence (for the latter, we give one possible ordering here). The hope is that they remind you of things to be aware of and possibly things you'll want to try doing in your presentations. Everything can be adapted; anything can be ignored so long as your audience isn't bothered by it. Because in the end, you're not giving the presentation for your sake (you already know the material); you've giving it for theirs. I know I know. That's common sense, right?

- Tony Eng

gr

THIS COMIC IS PART OF A LARGER PROFESSIONAL DEVELOPMENT EXPERIENCE FOR GRADUATE STUDENTS TO AID AND ENHANCE RESEARCH COMMUNICA TION SKILLS. THIS COMIC, AND OTHER RESOURCES LIKE IT, ARE AVAILABLE ONLINE AT:

GRADX.MIT.EDU

BEST
$B-1=\left(\begin{array}{l}\text { FRIENDS } \\ \text { FOREVER }\end{array}\right.$
II

$$
(B O G O)=\binom{O N E}{O N E}
$$

NO NEED TO SHOUT-

-SONNY.

INSTEAD OF JUST ACCOUNTING FOR LANGUAGE, ABILITY, AND AGE YOU WANT TO ALSO CONSIDER TECHNICAL

BACKGROUND.

YOUR CHILD
PRESENTS WITH ACQUIRED ACCOMMODATIVE ESOTROPIA AND POSSIBLE AMBLYOPIA OF THE RIGHT EYE RELATED TO STRABISMUS.

WE ARE GOING TO FOCUS ON CONTENT

IN PARTICULAR, WHAT MIGHT INTERFERE WITH YOUR AUDIENCE'S UNDERSTANDING OF YOUR MESSAGE?

JARGON CAN
DESCRIBE SOMETHING CONCISELY \& PRECISELY, AND IS CONVENIENT TO USE WITH YOUR TECHNICAL PEERS, BUT
OTHERWISE, IT IS AN UNNECESSARY AND UNWIELDY HURDLE FOR THOSE WHO ARE NEW TO YOUR FIELD AND UNFAMILIAR WITH ITS TERMS

θ

0

AND IF WE LOOK BACK AT SOME OF THE EXAMPLES MENTIONED EARLIER IN THE COMIC, THAT'S REALLY THE PROBLEM ISN'T IT?

TERMS THAT

WITH
THE NON-NATIVE ENGLISH SPEAKER, YOU

AVOID SLANG.

WITH THE ELDERLY, YOU
AVOID POP CULTURE REFERENCES.

WITH THE
TODDLER, YOU AVOID WORDS THEY HAVEN'T

IN THE END,
WHAT YOU ARE TRYING TO DO IS MINIMIZE UNFAMILIAR TECHNICAL JARGON AND, INSTEAD, USE WORDS THAT YOUR AUDIENCE UNDERSTANDS.

ASK THEM	
WHAT THER	ASK
BACKGROUND	OR,
IHEM II THEY	
IS THE	
START,	
UNDERSTAND	
CONVERSATION	

AND
YOU CAN ADJUST YOUR EXPLANATION AS YOU GO ALONG.

UNDERSTANDING ADJUST

RINSE AND

WHAT
ABOUT THE
SECOND
QUESTION?
BY
REMOVING JARGON
AND DETAILS ARE YOU MAKING THINGS LESS ACCURATE AND MORE GENERAL?

BUT THE GOAL HERE IS TO FIRST GET THE GIST OF YOUR IDEA

ACROSS WITHOUT OVERWHELMING YOUR AUDIENCE.

YOU'RE
PROBABLY USED
TO THE IDEA OF ADJUSTING TO YOUR AUDIENCE BY NOW.

WHY NOT ACCOUNT FOR TECHNICAL
BACKGROUND?

LEAVE TECHNICAL TERM OUT

DEFINE
TECHNICAL TERM

describe
 WHATS NOT HOW"

Etc.

- TO
 APPRECIATE
 IT.

WILL IT IMPROVE THEIR

THE
NARRATIVE TAKES SOMETHING ABSTRACT

IT SETS
YOUR AUDIENCE in A situation THAT THEY'RE FAMILIAR WITH-

- SOMETHING THAT THEY'D FIND OR IMAGINE
THEMSELVES IN-

YOU MAY NOT ACTUALLY BE APPLYING YOUR RESEARCH TO SOLVE THE SPECIFIC PROBLEM IN YOUR NARRATIVE AND THAT'S OK.

IN SUMMARY,
NARRATIVE QUICKLY ESTABLISHES CONTEXT.

NARRATIVE

 DESCRIBES THE PROBLEM YOU ARE SOLVING AND ILLUSTRATES THE IMPACT AND IMPORTANCE OF YOUR RESEARCH IN A RELATABLE WAY.

ONCE
YOUR AUDIENCE UNDERSTANDS WHY YOUR WORK SHOULD MATTER TO

THEM-

THEN YOU'VE SET THE STAGE TO BEGIN TO TALK ABOUT WHAT IT IS YOUR RESEARCH-

YOUR RESEARCH

-ACTUALLY
IS.

IIIT

Office of
Graduate Education
GRADX.MIT.EDU
G

THIS COMIC IS PART OF A LARGER PROFESSIONAL DEVELOPMENT EXPERIENCE FOR GRADUATE STUDENTS TO AID AND ENHANCE RESEARCH COMMUNICATION SKILLS. THIS COMIC, \&OTHER RESOURCES LIKE IT, ARE AVAILABLE ONLINE AT: GRADX.MIT.EDU

BROUGHT
TO YOU BY

Office of
Graduate Education

> A LONG FLAT LIST OF RELATED ITEMS CAN BE HARD TO REMEMBER AND QUITE BORING. ESPECIALLY IF THE PRESENTER

CAN
WE MAKE THE
INFORMATION IN A LIST OF RELATED ITEMS MORE EFFICIENTLY ACCESSIBLE?

CAN I FIND
A LAYOUT THAT SOMEHOW CONVEYS MORE INFORMATION
THAN A FLAT
LIST?

iOS Games: Revenue Streams

- Charge for app
- Have a free \& a pro version
- Advertising
- In-app purchasing
- Sell something in the real world
- Subscription

Six Revenue Streams for iOS Games

$$
\begin{gathered}
\text {-SO THAT } \\
\text { THE AUDIENCE } \\
\text { READILY SEES WHERE } \\
\text { THIS ONLINE COURSE } \\
\text { FITS IN AND WHHAT } \\
\text { SETS IT APART- }
\end{gathered}
$$

TOO SLOW
YOU BORE THEM.

For example:
the Jaccard Distance of \{ 123 \} and \{ 345 \} should be higher than \{ 123 \} $\left\{\begin{array}{lll}2 & 3 & 4\end{array}\right\}$ because the first two sets are more "dissimilar" than the second two.
$J(A, B)=\frac{|A \cup B|-|A \cap B|}{|A \cup B|}$
THE AUDIENCE NEEDS TIME TO THINK ABOUT WHETHER OR NOT WHAT YOU JUST SAID MAKES SENSE GIVEN THEIR UNDERSTANDING SO FAR.

PACING BECOMES ESPECIALLY IMPORTANT WHEN YOU ARE TRYING TO TEACH SOMETHING TECHNICAL.

-

$$
|A \cup B|
$$

THEY
IN ORDER OF
APPEARANCE, ARE:
(2) an "e.c. clause"
(3) an explanation (4) an elaboration, (5) a REPHRASING

I'M BEING REPETITIVE-

THEY'RE NOT EXPLICIT,

HERE ARE EXAMPLES OF THE REMAINING THREE:

THE AUDIENCE NEEDS TIME TO THINK ABOUT WHETHER OR NOT WHAT YOU JUST SAID MAKES SENSE GIVEN THEIR UNDERSTANDING SO FAR.
-stance
ind
ld be
123 \}
\cdots ? the
EXPLANATION WHY Eill $\frac{1 A n B 1}{1}$

a

ELABORATION

REPHRASING

EVEN

THOUGH I'VE
USED THEM HERE IN A NON-TECHNICAL THEY CAN

IN TECHNICAL MATERIAL.
 EXAMPLE, ALSO BE USED

MOMENTS LIKE THESE PROVIDE OPPORTUNITIES TO REPEAT WHAT YOU SAID DIFFERENTLY-

- WHICH ALLOWS LEARNERS TO DOUBLE-CHECK THEIR UNDERSTANDING

1. M1 E. Chitsen 2. M. G. ChHEEn
2. $\mathrm{ZYPL} A N A T H O N$
3. $=$ LABORATEON

5 , iephitain
6. DESCRIBING WHAT THE TERMS REPRESENT
7. SHOWING HOW A CHANGE IN ONE VARIABLE AFFECTS THE EQUATION
8. DISCUSSING EDGE OR BOUNDARY CASES

HERE'S AN
EXAMPLE OF A
TRANSCRIPT OF ME TEACHING THE JACCARD DISTANCE

TO A STUDENT SEEING IT FOR THE FIRST TIME.

WARNING
 THIS WILL BE LONG DUE TO THE INCLUSION OF MANY "BUYING TIME" ELEMENTS

introduction to Jaccard Distance

Let's consider the Jaccard Distance.

It's a measure of how "dissimilar" two sets are, the more dissimilar the larger the Jaccard Distance.

For example, the Jaccard Distance of $\{123\}$ and $\{345\}$ should be higher than $\{123\}\{234\}$ because the first two sets are more "dissimilar" than the second two.

This distance metric is given by the following formula:

The numerator is the number of elements that are a member of either A or B, but not both.

And the denominator is the total number of elements in A when combined with B.
so the Jaccard Distance is essentially the fraction of elements that are not common to both sets.

For the examples above, the Jaccard Distances are $4 / 5$ and $2 / 4$ respectively.

Note that if A equals B_{1} then there are no elements that are not common to both, so the Jaccard Distance is 0 - i.e. the sets are not dissimilar.

-KEY

The shortest version of the explanation with all "buying time" elements removed
(1) - an "i.e. clause"
(2) -an "e.g. clause"
(3)-an explanation of why
(4)-an elaboration, and
(5)-a rephrasing.
(b)- describing what the terms represent
(1)-showing how a change in one
variable affects the equation,
(8)-discussing edge or boundary cases.

As the number of elements that are not common to both sets increases, meaning the sets get more and more dissimilar, the Jaccard Distance increases from zero.

It reaches its maximum value of 1 when the sets are disjoint - when none of the elements of A overlap with those of B, so every member of A and every member of B are counted in the numerator.

And lastly, if one set is contained within the other, without loss of generality, assume A is a subset of B_{1} then the Jaccard Distance becomes the fraction of elements that are in B_{1} the larger set, that are not in A.

TWO
THOUGHTS.

FIRST-

合

Office of Graduate Education

${ }^{\text {Cont }} 0$

TONYENG

PATRICK YURICK

NG

LIMITED EDITION

EXPLAINING WHITE Ex-LDRING

THE PRESENTER CONTROLS FOCUS
TO DO JUST THE OPPOSITE-

WHEN YOU ADVANCE TO A NEW SLIDE THE AUDIENCE LOOKS

AT THE SLIDE.
THEY
IMMEDIATELY TRY TO READ IT WHILE LISTENING TO YOU AT THE SAME TIME.

THEY EITHER
LISTEN TO YOU OR READ THE SLIDE.

> OR WORSE, TRY TO DO BOTH AT THE SAME TIME.

TO KEEP SLIDES FROM COMPETING WITH YOU FOR YOUR AUDIENCE'S ATTENTION, TRY TO KEEP SLIDES "GLANCEABLE".

THAT WAY, AN AUDIENCE CAN GLANCE AT THE NEW INFORMATION ON A SLIDE AND THEN FOCUS THEIR ATTENTION BACK ON YOU.

2. ORIENT

THE QUESTION YOU'RE TRYING TO ANSWER,

WHAT THE
EXPERIMENT WAS,

1. THE QUESTION
2. THE GOAL
3. THE SETUP
4. THE METHOD
5. ETC.

IN TERMS
OF TIMING, MOST
PRESENTERS SHOW A
DATA SLIDE AND THEN PROCEED TO GIVE CONTEXT FOR THAT SLIDE.

ONE-

POINT OUT THINGS THAT ONE WOULD EXPECT TO SEE IN THE DATA AND THEN...

EXPECTED

```
THE EXPECTED HELPS THE AUDIENCE CONFIRM BOTH THEIR UNDERSTANDING AND THE VALIDITY OF THE DATA, BUT THE UNEXPECTED TENDS TO BE MORE INTERESTING.
```


UNEXPECTED

-FOCUSED
ON YOU-

INSTEAD, I'VE GOT TO FIND WAYS TO CONDENSE THE MATERIAL DOWN TO A MAXIMUM CUT-OFF.

SECOND, I TRY TO BE MORE DIRECT AND TO THE POINT.

THIRD, I EMPLOY RHETORIC, SUCH AS THE RULE OF THREE \& ALLITERATION, WHENEVER I CAN.

1. Remember*

2. Rheborical
3. Rules

Two of George Copen's

 Ideas
TOPIC

CHANGING

start the next sentence with the idea that ended the preceding sentence.

TOPIC STRINGING
start the next sentence with the same idea that started the preceding sentence.

$$
\begin{aligned}
& A \rightarrow B \\
& A \rightarrow C \\
& A \rightarrow D \\
& A \rightarrow E
\end{aligned}
$$

\rightarrow THE WHOLE PAPER!

AS A STUDENT, I WROTE PAPERS.

THESE PAPERS HAD PAGE LIMITS.
IIC, HERE'S WHAT I WOULD GET:

IT'S NO LONGER PADDING MATERIAL TO REACH A MINIMUM THRESHOLD, BUT-

IN TODAY'S
WORLD OF TWEETS, TAGLINES AND TL;DR,

ATTENTION SPANS ARE SHORT.

NOW, IF I WERE TO THEN SUMMARIZE THIS SUMMARY, I'D GET:

hapter I

Introduction

SIMPLIFY

The complete genetic sequen more organisms are bein regions quickly deciphered. Structural nd functional genomics, the d becomes the next phase towards under anding the genetic program. knowledge of a protein's sequence.

Proteins are essential to life, playing key roles in all bio antibodies in an immune respo ed messengers that effect extrace, survival of any organism.

One of the first steps in understandin, sequence characterizes the protein, offe targeted destination) and how it does it process by which this primary structur nus to the other, is enumerated.

A protein can be easily sequenced using the other hand, the genomic DNA were availat certainty because post-transcriptional and genomic sequence. If, however, one were might find sequence information by prol

Abstract

With the explosion of research activity in genomic protein sequencing algorithms, and mass spectron process. Most sequencing from tandem mass spe peptides, or manual sequence inference by hum: presented with the spectra of unk own and no do not easily lend the mo - oto manual interp sensitive to noise gaps in the dataset and t Cons ently, de novo protein sequencin emore, these were not developedf ne of Flight and Post Source Df internal ions, which may serve
Ne propose a new approach that iny this model, and a simulated anneali mass and the MALDI-TOF PSD.

REMOVE

 , then the real seque , under the appropri: ricient to correctly pre noise and gaps in the data.

Technically Speaking: An Illustrated Guide For Professional Development explores tactics and approaches to consider when when communicating research to a variety of audiences.

Topics Covered

- Choosing appropriate language to avoid overwhelming your audience
- Using narrative to explain why your research is important
- Synthesizing prior work to convey where yours fits in by highlighting differences
- Controling focus in order to minimize cognitive load when presenting data
- Leaving time for an audience to process when explaining how something works
- Distilling your message when time \& attention spans are short

This comic is part of a larger professional development experience for graduate students to aid and enhance research communication skills. This comic, and other resources like it, are available online at:

